ABSTRACT
The current management for chronic osteomyelitis centers on adequate antibiotic coverage
and surgical debridement of nonviable tissue. The eradication of osteomyelitis, however,
often involves a prolonged and frustrating course of management. Nonsurgical adjunctive
modalities have not been widely used, mostly due to a lack of perceived efficacy,
and have remained in a state of infancy. In this article, we will outline the rationale,
current status, and evidence for several potential adjuncts to osteomyelitis management.
KEYWORDS
Osteomyelitis - adjunctive therapy - hyperbaric oxygen therapy - biofilm - growth
factor
REFERENCES
- 1
Lew D P, Waldvogel F A.
Osteomyelitis.
Lancet.
2004;
364
369-379
- 2
Parsons B, Strauss E.
Surgical management of chronic osteomyelitis.
Am J Surg.
2004;
188(Suppl)
57-66
- 3
Tice A D, Hoaglund P A, Shoultz D A.
Outcomes of osteomyelitis among patients treated with outpatient parenteral antimicrobial
therapy.
Am J Med.
2003;
114
723-728
- 4
Lipsky B A, Berendt A R, Deery H G et al..
Diagnosis and treatment of diabetic foot infections.
Plast Reconstr Surg.
2006;
117(7, Suppl)
212S-238S
- 5
Lavery L A, Armstrong D G, Wunderlich R P, Mohler M J, Wendel C S, Lipsky B A.
Risk factors for foot infections in individuals with diabetes.
Diabetes Care.
2006;
29
1288-1293
- 6
Chen C E, Shih S T, Fu T H, Wang J W, Wang C J.
Hyperbaric oxygen therapy in the treatment of chronic refractory osteomyelitis: a
preliminary report.
Chang Gung Med J.
2003;
26
114-121
- 7
Chen C E, Ko J Y, Fu T H, Wang C J.
Results of chronic osteomyelitis of the femur treated with hyperbaric oxygen: a preliminary
report.
Chang Gung Med J.
2004;
27
91-97
- 8
Gill A L, Bell C NA.
Hyperbaric oxygen: its uses, mechanisms of action, and outcomes.
QJM.
2004;
97
385-395
- 9
Kawashima M, Tamura H, Nagayoshi I, Takao K, Yoshida K, Yamaguchi T.
Hyperbaric oxygen therapy in orthopedic conditions.
Undersea Hyperb Med.
2004;
31
155-162
- 10
Chen X, Kidder L S, Lew W D.
Osteogenic protein-1 induced bone formation in an infected segmental defect in the
rat femur.
J Orthop Res.
2002;
20
142-150
- 11
Chen X, Schmidt A H, Tsukayama D T, Bourgeault C A, Lew W D.
Recombinant human osteogenic protein-1 induces bone formation in a chronically infected,
internally stabilized segmental defect in the rat femur.
J Bone Joint Surg Am.
2006;
88
1510-1523
- 12
Ross J J.
Angiogenic gene therapy as a potential therapeutic agent in chronic osteomyelitis.
Med Hypotheses.
2006;
67
161-163
- 13
Southwood L L, Frisbie D D, Kawcak C E, Ghivizzani S C, Evans C H, McIlwraith C W.
Evaluation of Ad-BMP-2 for enhancing fracture healing in an infected defect fracture
rabbit model.
J Orthop Res.
2004;
22
66-72
- 14
Costerton J W.
Biofilm theory can guide the treatment of device-related orthopaedic infections.
Clin Orthop Relat Res.
2005;
437
7-11
- 15
Calhoun J H, Manring M M.
Adult osteomyelitis.
Infect Dis Clin North Am.
2005;
19
765-786
- 16
Vercillo M, Patzakis M J, Holtom P, Zalavras C G.
Linezolid in the treatment of implant-related chronic osteomyelitis.
Clin Orthop Relat Res.
2007;
461
40-43
- 17
Mader J T, Guckian J C, Glass D L, Reinarz J A.
Therapy with hyperbaric oxygen for experimental osteomyelitis due to Staphylococcus
aureus in rabbits.
J Infect Dis.
1978;
138
312-318
- 18
Mader J T, Brown G L, Guckian J C, Wells C H, Reinarz J A.
A mechanism for the amelioration by hyperbaric oxygen of experimental staphylococcal
osteomyelitis in rabbits.
J Infect Dis.
1980;
142
915-922
- 19
Mandell G L.
Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils.
Infect Immun.
1974;
9
337-341
- 20
Barth E, Sullivan T, Berg E.
Animal model for evaluating bone repair with and without adjunctive hyperbaric oxygen
therapy (HBO): comparing dose schedules.
J Invest Surg.
1990;
3
387-392
- 21
Hunt T K, Pai M P.
The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis.
Surg Gynecol Obstet.
1972;
135
561-567
- 22
Knighton D R, Silver I A, Hunt T K.
Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen
concentration.
Surgery.
1981;
90
262-270
- 23
Park M K, Myers R A, Marzella L.
Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial
agents, and immunologic responses.
Clin Infect Dis.
1992;
14
720-740
- 24
Verklin Jr R M, Mandell G L.
Alteration of effectiveness of antibiotics by anaerobiosis.
J Lab Clin Med.
1977;
89
65-71
- 25
Bennett M H, Stanford R, Turner R.
Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union.
Cochrane Database Syst Rev.
2005;
(1)
CD004712
- 26
Wang C, Schwaitzberg S, Berliner E, Zarin D A, Lau J.
Hyperbaric oxygen for treating wounds: a systematic review of the literature.
Arch Surg.
2003;
138
272-279
- 27
Davis J C, Heckman J D, DeLee J C, Buckwold F J.
Chronic non-hematogenous osteomyelitis treated with adjuvant hyperbaric oxygen.
J Bone Joint Surg Am.
1986;
68
1210-1217
- 28
Esterhai Jr J L, Pisarello J, Brighton C T, Heppenstall R B, Gellman H, Goldstein G.
Adjunctive hyperbaric oxygen therapy in the treatment of chronic refractory osteomyelitis.
J Trauma.
1987;
27
763-768
- 29 Centers for Medicare and Medicaid Services .Medicare National Coverage Determinations
Manual. 2007 Internet-only manual # 100-03 http://www.cms.hhs.gov/manuals/10m
- 30
Lentrodt S, Lentrodt J, Kubler N, Modder U.
Hyperbaric oxygen for adjuvant therapy for chronically recurrent mandibular osteomyelitis
in childhood and adolescence.
J Oral Maxillofac Surg.
2007;
65
186-191
- 31
Esterhai Jr J L, Pisarello J, Brighton C T, Heppenstall R B, Gellman H, Goldstein G.
Adjunctive hyperbaric oxygen therapy in the treatment of chronic refractory osteomyelitis.
J Trauma.
1987;
27
763-768
- 32
Southwood L L, Frisbie D D, Kawcak C E, Ghivizzani S C, Evans C H, McIlwraith C W.
Evaluation of Ad-BMP-2 for enhancing fracture healing in an infected defect fracture
rabbit model.
J Orthop Res.
2004;
22
66-72
- 33
Costerton J W, Stewart P S, Greenberg E P.
Bacterial biofilms: a common cause of persistent infections.
Science.
1999;
284
1318-1322
- 34
Gristina A G, Oga M, Webb L X, Hobgood C D.
Adherent bacterial colonization in the pathogenesis of osteomyelitis.
Science.
1985;
228
990-993
- 35
Mayberry-Carson K J, Tober-Meyer B, Smith J K, Lambe Jr D W, Costerton J W.
Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced
with Staphylococcus aureus.
Infect Immun.
1984;
43
825-833
- 36
Monzon M, Garcia-Alvarez F, Lacleriga A et al..
A simple infection model using pre-colonized implants to reproduce rat chronic Staphylococcus
aureus osteomyelitis and study antibiotic treatment.
J Orthop Res.
2001;
19
820-826
- 37
Dell'Acqua G, Giacometti A, Cirioni O et al..
Suppression of drug-resistant Staphylococcal infections by the quorum-sensing inhibitor
RNAIII-inhibiting peptide.
J Infect Dis.
2004;
190
318-320
- 38
Cirioni O, Giacometti A, Ghiselli R et al..
Prophylactic efficacy of topical temporin A and RNAIII-inhibiting peptide in a subcutaneous
rat pouch model of graft infection attributable to staphylococci with intermediate
resistance to glycopeptides.
Circulation.
2003;
108
767-771
- 39
Balaban N, Collins L V, Cullor J S et al..
Prevention of diseases caused by Staphylococcus aureus using the peptide RIP.
Peptides.
2000;
21
1301-1311
- 40
Nelson F R, Brighton C T, Ryaby J et al..
Use of physical forces in bone healing.
J Am Acad Orthop Surg.
2003;
11
344-354
- 41
Guerkov H H, Lohmann C H, Liu Y et al..
Pulsed electromagnetic fields increase growth factor release by nonunion cells.
Clin Orthop Relat Res.
2001;
384
265-279
- 42
Nagai M, Ota M.
Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic protein-2
and -4.
J Dent Res.
1994;
73
1601-1605
- 43
Rubin C, Bolander M, Ryaby J P, Hadjiargyrou M.
The use of low-intensity ultrasound to accelerate the healing of fractures.
J Bone Joint Surg Am.
2001;
83
259-270
- 44
Parvizi J, Wu C C, Lewallen D G, Greenleaf J F, Bolander M E.
Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by
increasing aggrecan gene expression.
J Orthop Res.
1999;
17
488-494
- 45
Yang K H, Parvizi J, Wang S J et al..
Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur
fracture model.
J Orthop Res.
1996;
14
802-809
- 46
Rawool N M, Goldberg B B, Forsberg F, Winder A A, Hume E.
Power Doppler assessment of vascular changes during fracture treatment with low-intensity
ultrasound.
J Ultrasound Med.
2003;
22
145-153
- 47
Ehrlich G D, Stoodley P, Kathju S et al..
Engineering approaches for the detection and control of orthopaedic biofilm infections.
Clin Orthop Relat Res.
2005;
437
59-66
- 48
McLeod B R, Fortun S, Costerton J W, Stewart P S.
Enhanced bacterial biofilm control using electromagnetic fields in combination with
antibiotics.
Methods Enzymol.
1999;
310
656-670
- 49
Eppley B L, Pietrzak W S, Blanton M.
Platelet-rich plasma: a review of biology and applications in plastic surgery.
Plast Reconstr Surg.
2006;
118
147e-159e
- 50
Liu Y, Kalen A, Risto O, Wahlstrom O.
Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH
dependent.
Wound Repair Regen.
2002;
10
336-340
- 51
Marx R E.
Platelet-rich plasma: evidence to support its use.
J Oral Maxillofac Surg.
2004;
62
489-496
Robert D GalianoM.D.
Assistant Professor of Surgery, Division of Plastic and Reconstructive Surgery, Department
of Surgery
Northwestern University Feinberg School of Medicine, Galter Pavilion 19-250, 675 N.
St. Clair Street, Chicago, IL 60611
Email: rgaliano@nmh.org